甘肃省科学技术奖申报项目公示

项目名称	10 兆电子伏强流超导直线加速器			
申报奖种	科技进步奖			
完成单位	中国科学院近代物理研究所			
完 成 人	何源,赵红卫,詹文龙,张军辉,王志军,张斌,张			
	生虎, 岳伟明, 贾欢, 武启, 石爱民, 郭玉辉, 万玉			
	琴,吴巍,张雍			

项目简介(限500字)

(科技进步奖项目所属科学技术领域、主要技术内容、授权专利情况、技术经济指标、应用推广及效益等情况。)

10 兆电子伏 (MeV) 强流超导直线加速器,是国际首台实现能量 10MeV、流强大于 1 毫安、连续波运行的超导直线加速器,是核技术应用领域重要突破性成果。项目由中科院战略先导专项支持,总投资约 2.5 亿元,2016 年 12 月通过中科院组织的专家测试,性能指标国际领先。

项目突破了强流束流动力学、高可靠质子源、强流连续波射频四极加速器 (RFQ)、高性能超导腔 (HWR)、超导螺线管、液氦低温系统、高功率束运行等一系列瓶颈技术。2014年7月起,RFQ稳定加速10毫安连续质子束,是当时唯一在运行的10毫安连续波RFQ加速器。创新结构的HWR 腔的机械和射频性能都得到提升,测试指标超过了国际上当时已发表的同类腔体。项目已授权发明专利14项。

该加速器已用于加速器驱动嬗变系统(ADS)前端示范装置。为 上海交大、中科院高能所、西北核技术院、近代物理所等单位的高 功率靶验证、医用同位素产生、抗辐照材料损伤、中子学数据库、 暗物质探测标定同位素、国防特殊同位素等研究提供了质子束流。

10MeV 超导加速器技术已整体用于甘肃省同位素实验室 "超重元素合成专用装置"和"先进加速器医用同位素生产装置"建设;以及国家重大科技基础设施"强流重离子加速器"和"加速器驱动嬗变研究装置"建设,支持了以上项目立项。

完成人对项目主要贡献

7 27 17 21 17	九风八八为日工女贝帆						
姓名	排名	职称	单位	主要贡献			
何源	1	研究员	中国科学	总体技术方案比较研究			
			院近代物	与设计; 关键技术比较			
			理研究所	研究与发展策略制定;			
				组织和参与射频四极加			
				速器、超导腔、强流束流			
				运行关键技术攻关			
赵红卫	2	院士	中国科学	项目组织实施;			
			院近代物	总体技术路线制定; 关			
			理研究所	键技术路线选择			
詹文龙	3	院士	中国科学	项目概念提出;			
			院近代物	立项与总体规划;			
			理研究所	总体技术路线选择			
张军辉	4	正高级	中国科学	液氦低温系统研制; 液			
		工程师	院近代物	氦恒温器总体设计; 射			
			理研究所	频四极加速器焊接关键			
				工艺攻关			
王志军	5	高级工	中国科学	强流束流动力学物理设			
		程师	院近代物	计,强流束流关键物理			
			理研究所	实验, 高功率東流调试			
				运行			

张斌	6	正高级	中国科学	加速器机械、准直总体
		工程师	院近代物	 设计;射频四极加速器
			理研究所	加工制造关键工艺技术
				攻关;
张生虎	7	正高级	中国科学	射频超导腔研制总体协
		工程师	院近代物	调; 首台超导腔水平测
			理研究所	试攻关;分析发现并协
				助解决超导腔运行稳定
				关键问题
岳伟明	8	高级工	中国科学	射频超导腔设计、研制、
		程师	院近代物	运行
			理研究所	
贾欢	9	高级工	中国科学	强流中能传输线、高能
		程师	院近代物	束流传输线设计并负责
			理研究所	研制运行;射频四极加
				速器束流调试;参与定
				时系统与束测系统设
				计,做出重要贡献;参与
				超导段束流调试,做出
				重要贡献。
武启	10	高级工	中国科学	离子源的设计研制,离
		程师	院近代物	子源及低能传输线平台
			理研究所	的建设,调试及运维
石爱民	11	正高级	中国科学	射频四极加速器系统功
		工程师	院近代物	率源、匹配系统、耦合器
			理研究所	设计、研制、运行。
郭玉辉	12	正高级	中国科学	控制系统设计、研制、运

		工程师	院近代物	行
			理研究所	
万玉琴	13	高级工	中国科学	液氦恒温器设计、研制、
		程师	院近代物	运行
			理研究所	
吴巍	14	正高级	中国科学	超导磁体设计、研制、运
		工程师	院近代物	行
			理研究所	
张雍	15	高级工	中国科学	高精度束流位置探测器
		程师	院近代物	(常温、低温)设计研
			理研究所	制,束流测量系统运行